2004 – 2008 圣路易斯华盛顿大学能源环境与化学工程系,博士
2002 – 2004 bat365在线平台官方网站环境科学与工程系,硕士
1998 – 2002 bat365在线平台官方网站环境科学与工程系,学士
本站不再支持您的浏览器,360、sogou等浏览器请切换到极速模式,或升级您的浏览器到 更高版本!以获得更好的观看效果。关闭
师资队伍
首页 > 师资队伍 > 教师 > 大气污染与控制教研所 > 正文
大气污染与控制教研所
蒋靖坤
邮箱:jiangjk@tsinghua.edu.cn
电话:010-62781512
地点:bat365在线平台官方网站中意清华环境节能楼
教育背景
2004 – 2008 圣路易斯华盛顿大学能源环境与化学工程系,博士
2002 – 2004 bat365在线平台官方网站环境科学与工程系,硕士
1998 – 2002 bat365在线平台官方网站环境科学与工程系,学士
工作履历
2017-至今 365英国上市官网 长聘教授
2010-2016 365英国上市官网 副研究员、准聘副教授、长聘副教授
2008 -2010 明尼苏达大学机械工程系,博士后
教学
2021-至今 理论与实践:空气(本科生)
2011-至今 气溶胶力学(研究生)
2013-2020 空气质量管理(本科生)
2020 新生导引课(本科生)
2010 纳米技术与工程,客座教师
2008 表面和胶体科学,助教
2005 传递现象,助教
学术兼职
2021 – 至今 Editorial Board, Results in Engineering
2020 – 至今 Editorial Board, Environmental Science & Technology Letters
2019 – 至今 Editorial Board, Environmental Research
2016 – 至今 Editor, Aerosol Science and Technology
2016 – 至今 环境模拟与污染控制国家重点联合实验室清华分室主任
2017 – 2018 Technical Program Committee, 2018 International Aerosol Conference
2017 – 2020 Guest editor, Atmospheric Chemistry & Physics
2016 – 2019 Editorial Board, Journal of Aerosol Science
奖励与荣誉
2020,ES&T Letters Excellence in Review Award
2020,教育部长江学者特聘教授
2019,中国化学会青年环境化学奖
2019,bat365在线平台官方网站青年教师教学优秀奖
2019,bat365在线平台官方网站先进工作者
2018,Smoluchowski Award
2017、2018、2019, bat365在线平台官方网站年度教学优秀奖
2016,教育部青年长江学者
2016,北京市科技进步一等奖
2016,国家环境保护专业技术青年拔尖人才
2016,bat365在线平台官方网站2015届&2016届毕业生心目中的好教师
2015,Asian Young Aerosol Scientist Award
2015,国家科技进步二等奖
2014,“万人计划”青年拔尖人才
2014,国家优秀青年科学基金
2014,教育部科技进步一等奖
2014,北京市科技新星
2012,bat365在线平台官方网站第五届青年教师教学大赛二等奖(理工组)
2009,A&WMA Dissertation Award
2002,bat365在线平台官方网站优良毕业生
研究领域
大气污染与控制、气溶胶科学与技术、颗粒物测量和成因
研究概况
大气霾化学,基金委基础科学中心项目,2022-2026;
我国东部超大城市群大气复合污染成因外场综合协同观测研究,基金委重大研究计划集成项目,2021-2023;
环境介质中的病毒识别与传播规律,基金委重大项目,2021-2025;
新冠病毒传播与环境的关系及风险防控,国务院联防联控机制科技攻关专项,2020-2021;
New particle formation and growth mechanism in atmospheric environments with high aerosol loading, Samsung Global Research Program, 2019-2025;
面向交通系统颗粒物排放监测的道路微站技术研究,政府间国际科技创新合作重点专项,2019-2022;
改进冷凝生长技术以提高1-3纳米大气颗粒物检测效率,基金委面上项目, 2019-2022;
多尺度高时空分辨率污染物排放及变化趋势,国家重点研发计划,2018-2021;
大气中Criegee中间体实时在线检测方法研发,基金委重点项目,2018-2022;
纳米颗粒物粒径分析技术,国家重点研发计划,2017-2020;
大气细颗粒物暴露导致慢阻肺的暴露组学与系统生物学研究,基金委重大研究计划重点项目,2017-2020;
大气颗粒有机物在线前处理及富集技术研发,国家重点研发计划,2016-2020;
大气污染化学,基金委优秀青年基金项目,2015-2017;
长三角区域大气重污染事件发生特征与形成途径研究,“十二五”科技支撑项目,2014-2017;
北京市民用燃煤PM2.5排放特征研究,北京市科技新星项目,2014-2017;
多介质复合污染与控制化学,基金委创新群体项目,2013-2018;
二次细粒子粒径分布、化学组成和光学特性在线测量系统,基金委国家重大科研仪器设备研制专项,2013-2017;
烟气系统中细颗粒物的转化机制与脱除增强的机理与方法,973项目,2013-2017;
钢铁窑炉烟尘PM2.5控制技术与装备,863项目,2013-2015;
大气二次颗粒物的化学组分特征及形成机制,基金委重大项目,2012-2016;
大气新粒子的生长机制研究, 基金委青年基金项目,2012-2014;
长江三角洲地区大气灰霾特征与控制途径研究, 环保公益性行业科研项目,2010-2013;
Clusters to Nanoparticles: Implications for Atmospheric Nucleation. U.S. National Science Foundation, 2005-2010;
Growth Rates of Freshly Nucleated Particles. U.S. Department of Energy, 2007-2010;
Relationship between Phsico-chemical Characteristics and Toxicological Properties of Nanomaterials. U.S. Air Force Office of Scientific Research, 2005-2009;
Full Development of Interactive Aerosol Program. U.S. National Science Foundation, 2005-2008;
Synthesis and Application of Magnetic Nanoparticles. U.S. National Science Foundation, 2003-2007;
燃烧源可吸入颗粒物源的物理化学特征及其成因研究,973计划项目,2002-2007。
学术成果
一、英文文章
2022
Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities
Nie, W.; Yan, C.; Huang, D. D.; Wang, Z.; Liu, Y.; Qiao, X.; Guo, Y.; Tian, L.; Zheng, P.; Xu, Z.; Li, Y.; Xu, Z.; Qi, X.; Sun, P.; Wang, J.; Zheng, F.; Li, X.; Yin, R.; Dallenbach, K. R.; Bianchi, F.; Petäjä, T.; Zhang, Y.; Wang, M.; Schervish, M.; Wang, S.; Qiao, L.; Wang, Q.; Zhou, M.; Wang, H.; Yu, C.; Yao, D.; Guo, H.; Ye, P.; Lee, S.; Li, Y. J.; Liu, Y.; Chi, X.; Kerminen, V.-M.; Ehn, M.; Donahue, N. M.; Wang, T.; Huang, C.; Kulmala, M.; Worsnop, D.; Jiang*, J.; Ding*, A.
Nature Geoscience, 2022, 15: 255-261
Measuring size distributions of atmospheric aerosols using natural air ions
Li, Y.; X. Chen; J. Jiang*
Aerosol Science and Technology, 2022, 56: 655-664
Toxic potency-adjusted control of air pollution for solid fuel combustion
Wu, D.; H. Zheng; Q. Li; L. Jin; R. Lyu; X. Ding; Y. Huo; B. Zhao; J. Jiang;J. Chen; X. Li; S. Wang
Nature Energy, 2022, 7: 194-202
Application of smog chambers in atmospheric process studies
Chu, B.; T. Chen; Y. Liu; Q. Ma; Y. Mu; Y. Wang; J. Ma; P. Zhang; J. Liu; C. Liu; H. Gui; R. Hu; B. Hu; X. Wang; Y. Wang; J. Liu; P. Xie; J. Chen; Q. Liu; J. Jiang; J. Li; K. He; W. Liu; G. Jiang; J. Hao; H. He
National Science Review, 2022, 9: nwab103
Insufficient condensable organic vapors lead to slow growth of new particles in an urban environment
Li, X.; Li, Y.; Cai, R.; Yan, C.; Qiao, X.; Guo, Y.; Deng, C.; Yin, R.; Chen, Y.; Li, Y.; Yao, L.; Sarnela, N.; Zhang, Y.; Petäjä, T.; Bianchi, F.; Liu, Y.; Kulmala, M.; Hao, J.; Smith*, J. N.; Jiang*, J
Environ. Sci. & Technol., 2022, doi: 10.1021/acs.est.2c01566
Variations and Sources of Organic Aerosol in Winter Beijing under Markedly Reduced Anthropogenic Activities During COVID-2019
Hu, R.; S. Wang; H. Zheng; B. Zhao; C. Liang; X. Chang; Y. Jiang; R. Yin; J. Jiang; J. Hao
Environ. Sci. & Technol., 2022, doi: 10.1021/acs.est.1021c05125
Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions
Yang, D.; S. Zhu; Y. Ma; L. Zhou; F. Zheng; L. Wang; J. Jiang; J. Zheng
Environ. Sci. & Technol., 2022, 56: 5440-5447
Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particles
Peng, C.; C. Deng; T. Lei; J. Zheng; J. Zhao; D. Wang; Z. Wu; L. Wang; Y. Chen; M. Liu; J. Jiang; A. Ye; M. Ge; W. Wang
J Environ. Sci., 2022, doi: 10.1016/j.jes.2022.03.006
Suggestion on further strengthening ultra-low emission standards for PM emission from coal-fired power plants in China
Deng, J.; S. Wang; J. Zhang;Y. Zhang; J. Jiang; Y. Gu; T. Han; L. Feng; J. Gao; L. Duan
J Environ. Sci., 2022, doi: 10.1016/j.jes.2022.03.007
The contribution of new particle formation and subsequent growth to haze formation
Kulmala, M.; R. Cai; D. Stolzenburg; Y. Zhou; L. Dada; Y. Guo; C. Yan; T. Petäjä; J. Jiang; V.-M. Kerminen
Environmental Science: Atmospheres, 2022, 2: 352-361
Detecting residual chemical disinfectant using an atomic Co–Nx–C anchored neuronal-like carbon catalyst modified amperometric sensor
Li, Z.; G. Jiang; Y. Wang; M. Tan; Y. Cao; E. Tian; L. Zhang; X. Chen; M. Zhao; Y. Jiang; Y. Luo; Y. Zheng; Z. Ma; D. Wang; W. Fu; K. Liu; C. Tang*; J. Jiang*
Environ. Sci.: Nano, 2022, 9: 1759-1769
Large contribution of non-priority PAHs in atmospheric fine particles: Insights from time-resolved measurement and nontarget analysis
An, Z.; X. Li; Y. Yuan; F. Duan; J. Jiang*
Environment International, 2022, 163: 107193
The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation
Wang, J.; Xing, J.; Wang, S.; Mathur, R.; Wang, J.; Zhang, Y.; Liu, C.; Pleim, J.; Ding, D.; Chang, X.; Jiang, J.; Zhao, P.; Sahu, S. K.; Jin, Y.; Wong, D. C.; Hao, J
Atmos. Chem. Phys., 2022, 22: 5147-5156
Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing
Hakala, S.; V. Vakkari; F. Bianchi; L. Dada; C. Deng; K. R. Dällenbach; Y. Fu; J. Jiang; J. Kangasluoma; J. Kujansuu; Y. Liu; T. Petäjä; L. Wang; C. Yan; M. Kulmala; P. Paasonen
Environmental Science: Atmospheres, 2022, 2: 146-164
Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases
Zhang, D.; Y. Yang; M. Li; Y. Lu; Y. Liu; J. Jiang; R. Liu; J. Liu; X. Huang; G. Li; J. Qu
Engineering, 2022, 10: 155-166
Significant Contribution of Coarse Black Carbon Particles to Light Absorption in North China Plain
Wang, J.; S. Wang; J. Wang; Y. Hua; C. Liu; J. Cai; Q. Xu; X. Xu; S. Jiang; G. Zheng; J. Jiang; R. Cai; W. Zhou; G. Chen; Y. Jin; Q. Zhang; J. Hao
Environmental Science & Technology Letters, 2022, 9(2): 134-139
Dynamic variations of phthalate esters in PM2.5 during a pollution episode
Li, X.; Z. An; Y. Shen; Y. Yuan; F. Duan; J. Jiang*
Science of The Total Environment, 2022, 810: 152269
An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plants
Liu, A.; J. Yi; X. Ding; J. Deng; D. Wu; Y. Huo; J. Jiang; Q. Li; J. Chen
Journal of Hazardous Materials, 2022, 428: 128221
Cr-Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity
Zhang, J.; F. Lv; Z. Li*; G. Jiang; M. Tan; M. Yuan; Q. Zhang; Y. Cao; H. Zheng; L. Zhang; C. Tang; W. Fu; C. Liu; K. Liu; L. Gu; J. Jiang*; G. Zhang*; S. Guo*
Advanced Materials, 2022, 34(2): 2105276
Evaluation of a cost-effective roadside sensor platform for identifying high emitters
Shen, Y.; Q. Zhang; D. Wang; M. Tian; Q. Yu; J. Wang; H. Yin; S. Zhang; J. Hao; J. Jiang*
Science of The Total Environment, 2022, 816: 151609
Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters
Kulmala, M.; D. Stolzenburg; L. Dada; R. Cai; J. Kontkanen; C. Yan; J. Kangasluoma; L. R. Ahonen; L. Gonzalez-Carracedo; J. Sulo; S. Tuovinen; C. Deng; Y. Li; K. Lehtipalo; K. E. J. Lehtinen; T. Petäjä; P. M. Winkler; J. Jiang; V.-M. Kerminen
Journal of Aerosol Science, 2022, 159: 105878
Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing
Wang*, Y.; P. Clusius; C. Yan; K. Dällenbach; R. Yin; M. Wang; X.-C. He; B. Chu; Y. Lu; L. Dada; J. Kangasluoma; P. Rantala; C. Deng; Z. Lin; W. Wang; L. Yao; X. Fan; W. Du; J. Cai; L. Heikkinen; Y. J. Tham; Q. Zha; Z. Ling; H. Junninen; T. Petäjä; M. Ge; Y. Wang; H. He; D. R. Worsnop; V.-M. Kerminen; F. Bianchi; L. Wang; J. Jiang*; Y. Liu*; M. Boy; M. Ehn; N. M. Donahue; M. Kulmala*
Environmental Science & Technology, 2022, 56: 770-778
Emission characteristics of heavy metals from a typical copper smelting plant
Zhang, J.; X. Sun; J. Deng; G. Li; Z. Li; J. Jiang; Q. Wu; L. Duan
Journal of Hazardous Materials, 2022, 424: 127311
2021
Sulfuric acid-amine nucleation in urban Beijing
Cai, R.; C. Yan; D. Yang; R. Yin; Y. Lu; C. Deng; Y. Fu; J. Ruan; X. Li; J. Kontkanen; Q. Zhang; J. Kangasluoma; Y. Ma; J.M. Hao; D.R. Worsnop; F. Bianchi; P. Paasonen; V.M. Kerminen; Y. Liu; L. Wang; J. Zheng; M. Kulmala; J. Jiang*
Atmospheric Chemistry and Physics, 2021, 21(4): 2457-2468
Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing
Yin, R.; C. Yan; R. Cai; X. Li; J. Shen; Y. Lu; S. Schobesberger; Y. Fu; C. Deng; L. Wang; Y. Liu; J. Zheng; H. Xie; F. Bianchi; D. R. Worsnop; M. Kulmala; J. Jiang*
Environmental Science & Technology, 2021, 55: 10994-11005
Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment
Qiao, X.; C. Yan*; X. Li; Y. Guo; R. Yin; C. Deng; C. Li; W. Nie; M. Wang; R. Cai; D. Huang; Z. Wang; L. Yao; D. R. Worsnop; F. Bianchi; Y. Liu; N. M. Donahue; M. Kulmala; J. Jiang*
Environmental Science & Technology, 2021, 55: 13646-13656
Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China
Chu, B.; L. Dada; Y. Liu; L. Yao; Y. Wang; W. Du; J. Cai; K. R. Dällenbach; X. Chen; P. Simonen; Y. Zhou; C. Deng; Y. Fu; R. Yin; H. Li; X.-C. He; Z. Feng; C. Yan; J. Kangasluoma; F. Bianchi; J. Jiang; J. Kujansuu; V.-M. Kerminen; T. Petäjä; H. He; M. Kulmala
Science of The Total Environment, 2021, 753: 142207
Formation and growth of sub-3nm particles in megacities: impact of background aerosols
Deng, C.; R. Cai; C. Yan; J. Zheng; J. Jiang*
Faraday discussions, 2021, 226: 348-363
Bioaerosol: A Key Vessel between Environment and Health
Jiang, J.; M. Yao; J. Hwang ; C. Wang
Frontiers of Environmental Science & Engineering, 2021, 15(3): 49
An indicator for sulfuric acid–amine nucleation in atmospheric environments
Cai, R.; C. Yan; D. R. Worsnop; F. Bianchi; V.-M. Kerminen; Y. Liu; L. Wang; J. Zheng; M. Kulmala; J. Jiang*
Aerosol Science and Technology, 2021, 55: 1059-1069
Composition of Ultrafine Particles in Urban Beijing: Measurement Using a Thermal Desorption Chemical Ionization Mass Spectrometer
Li, X.; Y. Li; M.J. Lawler; J. Hao; J. Smith*; J. Jiang*
Environmental science & technology, 2021, 55(5): 2859-2868
Tracing the origins of SARS-CoV-2: lessons learned from the past
Wang, Q.; H. Chen; Y. Shi; A. C. Hughes; W. J. Liu; J. Jiang; G. F. Gao; Y. Xue; Y. Tong
Cell Research, 2021, 31: 1139-1141
SARS-CoV-2 spillover into hospital outdoor environments
Zhang, D.; X. Zhang; Y. Yang; X. Huang; J. Jiang; M. Li; H. Ling; J. Li;Y. Liu; G. Li; W. Li; C. Yi; T. Zhang; Y. Jiang; Y. Xiong; Z. He; X. Wang; S. Deng; P. Zhao; J. Qu
Journal of Hazardous Materials Letters, 2021, 2: 100027
Chronic Exposure to PM2.5 Nitrate, Sulfate, and Ammonium Causes Respiratory System Impairments in Mice
Zhang, J.; H. Cheng; D. Wang; Y. Zhu; C. Yang; Y. Shen; J. Yu; Y. Li; S. Xu; S. Zhang; X. Song; Y. Zhou; J. Chen; J. Jiang; L. Fan; C. Wang; K. Hao
Environmental science & technology, 2021, 55(5): 3081-3090
Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution
Zhang, J.; H. Cheng; D. Wang; Y. Zhu; C. Yang; Y. Shen; J. Yu; Y. Li; S. Xu; X. Song; Y. Zhou; J. Chen; L. Fan; J. Jiang; C. Wang; K. Hao
Environmental Pollution, 2021, 280: 116951
Improving data reliability: A quality control practice for low-cost PM2.5 sensor network
Qiao, X.; Q. Zhang; D. Wang; J. Hao; J. Jiang*
Science of The Total Environment, 2021, 779: 146381
The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing New-Particle Formation in Beijing
Yan, C.; R. Yin; Y. Lu; L. Dada; D. Yang; Y. Fu; J. Kontkanen; C. Deng; O. Garmash; J. Ruan; R. Baalbaki; M. Schervish; R. Cai; M. Bloss; T. Chan; T. Chen; Q. Chen; X. Chen; Y. Chen; B. Chu; K. Dällenbach; B. Foreback; X. He; L. Heikkinen; T. Jokinen; H. Junninen; J. Kangasluoma; T. Kokkonen; M. Kurppa; K. Lehtipalo; H. Li; H. Li; X. Li; Y. Liu; Q. Ma; P. Paasonen; P. Rantala; R.E. Pileci; A. Rusanen; N. Sarnela; P. Simonen; S. Wang; W. Wang; Y. Wang; M. Xue; G. Yang; L. Yao; Y. Zhou; J. Kujansuu; T. Petäjä; W. Nie; Y. Ma; M. Ge; H. He; N.M. Donahue; D.R. Worsnop; V.-M. Kerminen; L. Wang; Y. Liu*; J. Zheng*; M. Kulmala*; J. Jiang*; F. Bianchi*
Geophysical Research Letters, 2021, 48(7): e2020GL091944
Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?
Kulmala, M.; L. Dada; K.R. Daellenbach; C. Yan; D. Stolzenburg; J. Kontkanen; E. Ezhova; S. Hakala; S. Tuovinen; T.V. Kokkonen; M. Kurppa; R. Cai; Y. Zhou; R. Yin; R. Baalbaki; T. Chan; B. Chu; C. Deng; Y. Fu; M. Ge; H. He; L. Heikkinen; H. Junninen; Y. Liu; Y. Lu; W. Nie; A. Rusanen; V. Vakkari; Y. Wang; G. Yang; L. Yao; J. Zheng; J. Kujansuu; J. Kangasluoma; T. Petaja; P. Paasonen; L. Jarvi; D. Worsnop; A. Ding; Y. Liu; L. Wang; J. Jiang; F. Bianchi; V.-M. Kerminen
Faraday discussions, 2021, 226: 334-347
Impacts of coagulation on the appearance time method for new particle growth rate evaluation and their corrections
Cai, R.; C. Li; X.-C. He; C. Deng; Y. Lu; R. Yin; C. Yan; L. Wang; J. Jiang; M. Kulmala; J. Kangasluoma
Atmospheric Chemistry and Physics, 2021, 21(3): 2287-2304
Frontier review on comprehensive two-dimensional gas chromatography for measuring organic aerosol
An, Z.; X. Li; Z. Shi; B.J. Williams; R.M. Harrison; J. Jiang*
Journal of Hazardous Materials Letters, 2021, 2: 100013
General discussion: Aerosol formation and growth; VOC sources and secondary organic aerosols
Alam, M.S.; W. Bloss; J. Brean; P. Brimblecombe; C. Chan; Y. Chen; H. Coe; P. Fu; S. Gani; J. Hamilton; R. Harrison; J. Jiang; M. Kulmala; L. Lugon; G. McFiggans; A. Mehra; A. Milsom; B. Nelson; C. Pfrang; K. Sartelet; Z. Shi; D. Srivastava; G. Stewart; P. Styring; H. Su; D. van Pinxteren; E. Velasco; J.Z. Yu
Faraday discussions, 2021, 226: 479-501
Investigation of MOF-derived humidity-proof hierarchical porous carbon frameworks as highly-selective toluene absorbents and sensing materials
Li, Z.; Y. Yuan; H. Wu; X. Li; M. Yuan; H. Wang; X. Wu; S. Liu; X. Zheng; M. Kim; H. Zheng; S. Rehman; G. Jiang; W. Fu; J. Jiang*
Journal of Hazardous Materials, 2021, 411: 125034
2020
Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing
Deng, C.; Y. Fu; L. Dada; C. Yan; R. Cai; D. Yang; Y. Zhou; R. Yin; Y. Lu; X. Li; X. Qiao; X. Fan; W. Nie; J. Kontkanen; J. Kangasluoma; B. Chu; A. Ding; V.-M. Kerminen; P. Paasonen; D.R. Worsnop; F. Bianchi; Y. Liu; J. Zheng; L. Wang; M. Kulmala*; J. Jiang*
Environmental Science & Technology, 2020, 54: 8547-8557
Quantifying the Deposition of Airborne Particulate Matter Pollution on Skin Using Elemental Markers
Morgan, J.L.L.; A. Shauchuk; J.L. Meyers; A. Altemeier; X.H. Quo; M. Jones; E.D. Smith; J. Jiang
Environmental Science & Technology, 2020, 54(24): 15958-15967
Air pollutant emissions from coal-fired power plants in China over the past two decades
Wang, G.; J. Deng; Y. Zhang; Q. Zhang; L. Duan; J. Hao; J. Jiang*
Science of The Total Environment, 2020, 741: 140326
Three-dimensional tomography reveals distinct morphological and optical properties of soot aggregates from coal-fired residential stoves in China
Zhang, C.; W.R. Heinson; P. Liu; P. Beeler; Q. Li; J. Jiang; R.K. Chakrabarty
Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254: 107184
Unprecedented Ambient Sulfur Trioxide (SO3) Detection: Possible Formation Mechanism and Atmospheric Implications
Yao, L.; X.L. Fan; C. Yan; T. Kurten; K.R. Daellenbach; C. Li; Y.H. Wang; Y.S. Guo; L. Dada; M.P. Rissanen; J. Cai; Y.J. Tham; Q.Z. Zha; S.J. Zhang; W. Du; M. Yu; F.X. Zheng; Y. Zhou; J. Kontkanen; T. Chan; J.L. Shen; J.T. Kujansuu; J. Kangasluoma; J. Jiang; L. Wang; D.R. Worsnop; T. Petaja; V.M. Kerminen; Y.C. Liu; B.W. Chu; H. He; M. Kulmala; F. Bianchi
Environmental Science & Technology Letters, 2020, 7(11): 809-818
A Sampler for Collecting Fine Particles into Liquid Suspensions
Wang, D.; J. Jiang; J. Deng; Y. Li; J. Hao
Aerosol and Air Quality Research, 2020, 20(3): 654-662
Investigating the effectiveness of condensation sink based on heterogeneous nucleation theory
Tuovinen, S.; J. Kontkanen; J. Jiang; M. Kulmala
Journal of Aerosol Science, 2020, 149: 105613
Size-Resolved Chemical Composition of Sub-20 nm Particles from Methanesulfonic Acid Reactions with Methylamine and Ammonia
Perraud, V.; X. Li; J. Jiang; B.J. Finlayson-Pitts; J.N. Smith
ACS Earth and Space Chemistry, 2020, 4(7): 1182-1194
Ultrasonication to reduce particulate matter generated from bursting bubbles: A case study on zinc electrolysis
Ma, Z.; J. Jiang; L. Duan; Z. Li; J. Deng; J. Li; R. Zhang; C. Zhou; F. Xu; L. Jiang; N. Duan
Journal of Cleaner Production, 2020, 272: 122697
Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain
Ma, T.; H. Furutani; F. Duan; T. Kimoto; J. Jiang; Q. Zhang; X. Xu; Y. Wang; J. Gao; G. Geng; M. Li; S. Song; Y. Ma; F. Che; J. Wang; L. Zhu; T. Huang; M. Toyoda; K. He
Atmos. Chem. Phys., 2020, 20(10): 5887-5897
Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment
Liu, Y.; C. Yan; Z. Feng; F. Zheng; X. Fan; Y. Zhang; C. Li; Y. Zhou; Z. Lin; Y. Guo; Y. Zhang; L. Ma; W. Zhou; Z. Liu; L. Dada; K. Dällenbach; J. Kontkanen; R. Cai; T. Chan; B. Chu; W. Du; L. Yao; Y. Wang; J. Cai; J. Kangasluoma; T. Kokkonen; J. Kujansuu; A. Rusanen; C. Deng; Y. Fu; R. Yin; X. Li; Y. Lu; Y. Liu; C. Lian; D. Yang; W. Wang; M. Ge;Y. Wang; D.R. Worsnop; H. Junninen; H. He; V.-M. Kerminen; J. Zheng; L. Wang; J. Jiang; T. Petäjä; F. Bianchi; M. Kulmala
Big Earth Data, 2020, 4(3): 295-321
Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing
Li, X.X.; B. Zhao; W. Zhou; H.R. Shi; R.J. Yin; R.L. Cai; D.S. Yang; K. Dallenbach; C.J. Deng; Y.Y. Fu; X.H. Qiao; L. Wang; Y.C. Liu; C. Yan; M. Kulmala; J. Zheng; J.M. Hao; S.X. Wang; J. Jiang*
Science of the Total Environment, 2020, 721: 9
Wintertime Particulate Matter Decrease Buffered by Unfavorable Chemical Processes Despite Emissions Reductions in China
Leung, D.M.; H. Shi; B. Zhao; J. Wang; E.M. Ding; Y. Gu; H. Zheng; G. Chen; K.-N. Liou; S. Wang; J.D. Fast; G. Zheng; J. Jiang; X. Li; and J.H. Jiang
Geophysical Research Letters, 2020, 47: e2020GL087721
Size-resolved particle number emissions in Beijing determined from measured particle size distributions
Kontkanen, J.; C. Deng; Y. Fu; L. Dada; Y. Zhou; J. Cai; K.R. Daellenbach; S. Hakala; T.V. Kokkonen; Z. Lin; Y. Liu; Y. Wang; C. Yan; T. Petäjä; J. Jiang; M. Kulmala; P. Paasonen
Atmos. Chem. Phys., 2020, 20: 11329-11348
Overview of measurements and current instrumentation for 1–10 nm aerosol particle number size distributions
Kangasluoma, J.; R. Cai; J. Jiang; C. Deng; D. Stolzenburg; L.R. Ahonen;T. Chan; Y. Fu; C. Kim; T.M. Laurila; Y. Zhou; L. Dada; J. Sulo; R.C. Flagan; M. Kulmala; T. Petäjä; K. Lehtipalo
Journal of Aerosol Science, 2020, 148: 105584
Transmission via aerosols: Plausible differences among emerging coronaviruses
Jiang*, J.; Y. Vincent Fu; L. Liu; M. Kulmala
Aerosol Science and Technology, 2020, 54: 865-868
Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing
Hu, R.; Q. Xu; S. Wang; Y. Hua; N. Bhattarai; J. Jiang; Y. Song; K.R. Daellenbach; L. Qi; A.S.H. Prevot; J. Hao
Journal of Environmental Sciences, 2020, 95: 99-110
Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations
Dada, L.; I. Ylivinkka; R. Baalbaki; C. Li; Y. Guo; C. Yan; L. Yao; N. Sarnela; T. Jokinen; K.R. Daellenbach; R. Yin; C. Deng; B. Chu; T. Nieminen; Y. Wang; Z. Lin; R.C. Thakur; J. Kontkanen; D. Stolzenburg; M. Sipilä, T. Hussein; P. Paasonen; F. Bianchi; I. Salma; T. Weidinger; M. Pikridas; J. Sciare; J. Jiang; Y. Liu; T. Petäjä; V.M. Kerminen; M. Kulmala
Atmos. Chem. Phys., 2020, 20: 11747-11766
Comprehensive two-dimensional gas chromatography mass spectrometry with a solid-state thermal modulator for in-situ speciated measurement of organic aerosols
An, Z.; H. Ren; M. Xue; X. Guan; J. Jiang*
Journal of Chromatography A, 2020, 1625: 461336
Evaluating Airborne Condensable Particulate Matter Measurement Methods in Typical Stationary Sources in China
Wang, G.; Deng, J.; Zhang, Y.; Li, Y.; Ma, Z.; Hao, J.; Jiang*, J
Environmental Science & Technology, 2020, 54: 1363-1371
Significant ultrafine particle emissions from residential solid fuel combustion
Wang, D.; Li, Q.; Shen, G.; Deng, J.; Zhou, W.; Hao, J.; Jiang*, J
Science of The Total Environment, 2020, 715, 136992
Models for estimating nanoparticle transmission efficiency through an adverse axial electric field
Cai, R; J. Jiang*
Aerosol Science and Technology, 2020, 54: 332-341
Transmission of charged nanoparticles through the DMA adverse axial electric field and its improvement
Cai, R.; Y. Zhou; J. Jiang*
Aerosol Science and Technology, 2020, 54: 21-32
A Cost-effective, Miniature Electrical Ultrafine Particle Sizer (mini- eUPS) for Ultrafine Particle (UFP) Monitoring Network
Liu, Q.; D. Liu; X. Chen; Q. Zhang; J. Jiang; D.-R. Chen
Aerosol and Air Quality Research, 2020, 20: 231-241
Variation of size-segregated particle number concentrations in wintertime Beijing
Zhou, Y.; Dada, L.; Liu, Y.; Fu, Y.; Kangasluoma, J.; Chan, T.; Yan, C.; Chu, B.; Daellenbach, K. R.; Bianchi, F.; Kokkonen, T. V.; Liu, Y.; Kujansuu, J.; Kerminen, V. M.; Petäjä, T.; Wang, L.; Jiang, J.; Kulmala, M
Atmospheric Chemistry and Physics, 2020, 20: 1201-1216
China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002
Gao, M.; Liu, Z.; Zheng, B.; Ji, D.; Sherman, P.; Song, S.; Xin, J.; Liu, C.; Wang, Y.; Zhang, Q.; Xing, J.; Jiang, J.; Wang, Z.; Carmichael, G. R.; McElroy, M. B.
Atmospheric Chemistry and Physics, 2020, 20: 1497-1505
Cobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide
Li, Z.; R. Liu; C. Tang; Z. Wang; X. Chen; Y. Jiang; C. Wang; Y. Yuan; W. Wang; D. Wang; S. Chen; X. Zhang; Q. Zhang; J. Jiang*
Small, 2020, 16: 1902860
2019
Theoretical and experimental analysis of the core sampling method: Reducing diffusional losses in aerosol sampling line
Fu, Y.; M. Xue; R. Cai; J. Kangasluoma; J. Jiang*
Aerosol Science and Technology, 2019, 53: 793-801
Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration
Wang, Y.; Z. Li; C. Tang; H. Ren; Q. Zhang; M. Xue; J. Xiong; D. Wang; Q. Yu; Z. He; F. Wei; J. Jiang*,
Environmental Science: Nano, 2019, 6: 3113-3122
A soft X-ray unipolar charger for ultrafine particles
Chen, X.; J. Jiang; D.-R. Chen
Journal of Aerosol Science, 2019, 133: 66-71
Maximizing the singly charged fraction of sub-micrometer particles using a unipolar charger
Chen, X.; J. Jiang; D.-R. Chen
Aerosol Science and Technology, 2019, 53: 990-997
Time-Resolved Intermediate-Volatility and Semivolatile Organic Compound Emissions from Household Coal Combustion in Northern China
Cai, S.; L. Zhu; S. Wang; A. Wisthaler; Q. Li; J. Jiang; J. Hao
Environmental Science & Technology, 2019, 53: 9269-9278
Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China
Xu, Q.; S. Wang; J. Jiang; N. Bhattarai; X. Li; X. Chang; X. Qiu; M. Zheng; Y. Hua; J. Hao
Science of The Total Environment, 2019, 689: 1293-1303
Interactions between aerosol organic components and liquid water content during haze episodes in Beijing
Li, X.; S. Song; W. Zhou; J. Hao; D.R. Worsnop; J. Jiang*
Atmospheric Chemistry and Physics, 2019, 19: 12163-12174
Improving thermal desorption aerosol gas chromatography using a dual-trap design
Ren, H.; M. Xue; Z. An; J. Jiang*
Journal of Chromatography A, 2019, 1599: 247-252
Quartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosols
Ren, H.; M. Xue; Z. An; W. Zhou; J. Jiang*
Journal of Chromatography A, 2019, 1589: 141-148
Relative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidation
Li, X.; S. Chee; J. Hao; J. P. D. Abbatt; J. Jiang*; J. N. Smith*
Atmospheric Chemistry and Physics, 2019, 19: 1555-1570
Characteristics of particulate matter from four coal-fired power plants with low-low temperature electrostatic precipitator in China
Wang, G.; Z. Ma; J. Deng; Z. Li; L. Duan; Q. Zhang; J. Hao; J. Jiang*
Science of the Total Environment, 2019, 662: 455-461
Characteristics of Individual Particles Emitted from an Experimental Burning Chamber with Coal from the Lung Cancer Area of Xuanwei, China
Wang, W.; L. Shao; J. Li; L. Chang; D. Zhang; C. Zhang; J. Jiang
Aerosol and Air Quality Research, 2019, 19: 355-36
Airway microbiome is associated with respiratory functions and responses to ambient particulate matter exposure
Wang, L.; H. Cheng; D. Wang; B. Zhao; J. Zhang; L. Cheng; P. Yao; A. Di Narzo; Y. Shen; J. Yu; Y. Li; S. Xu; J. Chen; L. Fan; J. Lu; J. Jiang; Y. Zhou; C. Wang; Z. Zhang; K. Hao
Ecotoxicology and Environmental Safety, 2019, 167: 269-277
Development and qualification of a VH-TDMA for the study of pure aerosols
Oxford, C. R.; C. M. Rapp; Y. Wang; P. Kumar; D. Watson; J. L. Portelli; E. A. Sussman; S. Dhawan; J. Jiang; B. J. Williams
Aerosol Science and Technology, 2019, 53: 120-132
A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing
Lu, Y.; C. Yan; Y. Fu; Y. Chen; Y. Liu; G. Yang; Y. Wang; F. Bianchi; B. Chu; Y. Zhou; R. Yin; R. Baalbaki; O. Garmash; C. Deng; W. Wang; Y. Liu; T. Petaja; V.-M. Kerminen; J. Jiang; M. Kulmala; L. Wang
Atmospheric Chemistry and Physics, 2019, 19: 1971-1983
Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis
Li, Z.; H. He; H. Cao; S. Sun; W. Diao; D. Gao; P. Lu; S. Zhang; Z. Guo; M. Li; R. Liu; D. Ren; C. Liu; Y. Zhang; Z. Yang; J. Jiang; G. Zhang
Applied Catalysis B: Environmental, 2019, 240: 112-121
Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products
Li, Q.; J. Qi; J. Jiang*; J. Wu*; L. Duan; S. Wang; J. Hao
Science of the Total Environment, 2019, 650: 653-660
Bio(3)Air, an integrative system for monitoring individual-level air pollutant exposure with high time and spatial resolution
Cheng, H.; L. Wang; D. Wang; J. Zhang; L. Cheng; P. Yao; Z. Zhang; A. Di Narzo; Y. Shen; J. Yu; C. Wang; L. Fan; J. Lu; J. Jiang; K. Hao
Ecotoxicology and Environmental Safety, 2019, 169: 756-763
Parameters governing the performance of electrical mobility spectrometers for measuring sub-3 nm particles
Cai, R.; J. Jiang; S. Mirme; J. Kangasluoma
Journal of Aerosol Science, 2019, 127: 102-115
2018
Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China
Wang, G.; J. Deng; Z. Ma; J. Hao; J. Jiang*
Science of the Total Environment, 2018, 639: 695-704
Contribution of Hydroxymethane Sulfonate to Ambient Particulate Matter: A Potential Explanation for High Particulate Sulfur During Severe Winter Haze in Beijing
Moch, J. M.; E. Dovrou; L. J. Mickley; F. N. Keutsch; Y. Cheng; D. J. Jacob; J. Jiang; M. Li; J. W. Munger; X. Qiao; Q. Zhang
Geophysical Research Letters, 2018, 45: 11969-11979
Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide
Li, Z.; Y. Jiang; Z. Wang; W. Wang; Y. Yuan; X. Wu; X. Liu; M. Li; S. Dilpazir; G. Zhang; D. Wang; C. Liu; J. Jiang*
Microchimica Acta, 2018, 185:501
Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection
Li, Z.; Y. Jiang; C. Liu*; Z. Wang; Z. Cao; Y. Yuan; M. Li; Y. Wang; D. Fang; Z. Guo; D. Wang; G. Zhang; J. Jiang*
Environmental Science: Nano, 2018, 5: 1834-1843
Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China
Hua, Y.; S. Wang; J. Jiang; W. Zhou; Q. Xu; X. Li; B. Liu; D. Zhang; M. Zheng
Science of the Total Environment, 2018, 626: 519-527
Insights into extinction evolution during extreme low visibility events: Case study of Shanghai, China
Cheng, Z.; S. Wang; L. Qiao; H. Wang; M. Zhou; X. Fu; S. Lou; L. Luo; J. Jiang; C. Chen; X. Wang; J. Hao
Science of the Total Environment, 2018, 618: 793-803
Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers
Chen, X.; P. H. McMurry; J. Jiang*
Aerosol Science and Technology, 2018, 52: 809-813
Performance of Small Plate and Tube Unipolar Particle Chargers at Low Corona Current
Chen, X.; Q. Liu; J. Jiang; D.-R. Chen
Aerosol and Air Quality Research, 2018, 18: 2005-2013
Performance evaluation of a circular electrical aerosol classifier (CirEAC)
Chen, X.; Q. Liu; J. Jiang; D.-R. Chen
Journal of Aerosol Science, 2018, 118: 100-110
Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications
Chen, X.; J. Jiang*
Aerosol Science and Technology, 2018, 52: 1145-1155
Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier
Cai, R.; D. Yang; L. R. Ahonen; L. Shi; F. Korhonen; Y. Ma; J. Hao; T. Petaja; J. Zheng; J. Kangasluoma; J. Jiang*
Atmospheric Measurement Techniques, 2018, 11: 4477-4491
Estimating the influence of transport on aerosol size distributions during new particle formation events
Cai, R.; I. Chandra; D. Yang; L. Yao; Y. Fu; X. Li; Y. Lu; L. Luo; J. Hao; Y. Ma; L. Wang; J. Zheng; T. Seto; J. Jiang*
Atmospheric Chemistry and Physics, 2018, 18: 16587-16599
Characterization of a high-resolution supercritical differential mobility analyzer at reduced flow rates
Cai, R.; M. Attoui; J. Jiang; F. Korhonen; J. Hao; T. Petaja; J. Kangasluoma
Aerosol Science and Technology, 2018, 52: 1332-1343
2017
An optimized two-step derivatization method for analyzing diethylene glycol ozonation products using gas chromatography and mass spectrometry
Yu, R.; L. Duan; J. Jiang*; J. Hao
Journal of Environmental Sciences, 2017, 53: 313-321
Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates
Xing, J.; J. Wang; R. Mathur; S. Wang; G. Sarwar; J. Pleim; C. Hogrefe; Y. Zhang; J. Jiang; D. C. Wong; J. Hao
Atmos. Chem. Phys., 2017, 17: 9869-9883
Six-day measurement of size-resolved indoor fluorescent bioaerosols of outdoor origin in an office
Xie, Y.; O. A. Fajardo; W. Yan; B. Zhao*; J. Jiang*
Particuology, 2017, 31: 161-169
New particle formation in China: Current knowledge and further directions
Wang, Z.; Z. Wu; D. Yue; D. Shang; S. Guo; J. Sun; A. Ding; L. Wang; J. Jiang; H. Guo; J. Gao; H. C. Cheung; L. Morawska; M. Keywood; M. Hu
Science of The Total Environment, 2017, 577: 258-266
Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes
Wang, Y.; S. Bao; S. Wang; Y. Hu; X. Shi; J. Wang; B. Zhao; J. Jiang; M. Zheng; M. Wu; A. G. Russell; Y. Wang; J. Hao
Science of The Total Environment, 2017, 580: 283-296
Particulate matter pollution over China and the effects of control policies
Wang, J.; B. Zhao; S. Wang; F. Yang; J. Xing; L. Morawska; A. Ding; M. Kulmala; V.-M. Kerminen; J. Kujansuu; Z. Wang; D. Ding; X. Zhang; H. Wang; M. Tian; T. Petäjä; J. Jiang; J. Hao
Science of The Total Environment, 2017, 584-585: 426-447
Nascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame
Tang, Q.; R. Cai; X. You*; J. Jiang*
Proceedings of the Combustion Institute, 2017, 36: 993-1000
Biocoal Briquettes Combusted in a Household Cooking Stove: Improved Thermal Efficiencies and Reduced Pollutant Emissions
Qi, J.; Q. Li; J. Wu*; J. Jiang*; Z. Miao; D. Li
Environmental Science & Technology, 2017, 51: 1886-1892
PM2.5 Emission Reduction by Technical Improvement in a Typical Coal-Fired Power Plant in China
Ma, Z.; Z. Li; J. Jiang; J. Deng; Y. Zhao; S. Wang; L. Duan
Aerosol and Air Quality Research, 2017, 17: 636-643
Impacts of coal burning on ambient PM2.5 pollution in China
Ma, Q.; S. Cai; S. Wang; B. Zhao; R. V. Martin; M. Brauer; A. Cohen; J. Jiang; W. Zhou; J. Hao; J. Frostad; M. H. Forouzanfar; R. T. Burnett
Atmos. Chem. Phys., 2017, 17: 4477-4491
Performance calibration of low-cost and portable particular matter (PM) sensors
Liu, D.; Q. Zhang; J. Jiang; D.-R. Chen
Journal of Aerosol Science, 2017, 112: 1-10
Boron Doped ZIF-67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzyme-Free Hydrogen Peroxide Biosensor
Li, Z.; W. Wang; H. Cao; Q. Zhang; X. Zhou; D. Wang; Y. Wang; S. Zhang; G. Zhang; C. Liu; Y. Zhang; R. Liu*; J. Jiang*
Advanced Materials Technologies, 2017, 2: 1700224
Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR)
Li, Z.; J. Jiang; Z. Ma; O. A. Fajardo; J. Deng; L. Duan
Environmental Pollution, 2017, 230: 655-662
Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication
Li, Q.; J. Jiang*; S. X. Wang; K. Rumchev; R. Mead-Hunter; L. Morawska; J. M. Hao
Science of the Total Environment, 2017, 576: 347-361
Comparison of nanoparticle generation by two plasma techniques: Dielectric barrier discharge and spark discharge
Jiang, L.; Q. Li; D. Zhu; M. Attoui; Z. Deng; J. Tang; J. Jiang*
Aerosol Science and Technology, 2017, 51: 206-213
Modeling biogenic and anthropogenic secondary organic aerosol in China
Hu, J.; P. Wang; Q. Ying; H. Zhang; J. Chen; X. Ge; X. Li; J. Jiang; S. Wang; J. Zhang; Y. Zhao; Y. Zhang
Atmos. Chem. Phys., 2017, 17: 77-92
Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China
Cheng, Z.; X. Ma; Y. He; J. Jiang*; X. Wang; Y. Wang*; L. Sheng; J. Hu; N. Yan
Environmental Research, 2017, 156: 239-246
Aerosol surface area concentration: a governing factor in new particle formation in Beijing
Cai, R.; D. Yang; Y. Fu; X. Wang; X. Li; Y. Ma; J. Hao; J. Zheng*; J. Jiang*
Atmos. Chem. Phys., 2017, 17: 12327-12340
A new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavenging
Cai, R.; J. Jiang*
Atmos. Chem. Phys., 2017, 17: 12659-12675
A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing
Cai, R.; D.-R. Chen; J. Hao; J. Jiang*
Journal of Aerosol Science, 2017, 106: 111-119
2016
Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process
Zhou, W.; J. Jiang*; L. Duan; J. Hao
Environmental Science & Technology, 2016, 50: 7861-7869
Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies
Ma, Z.; J. Deng; Z. Li; Q. Li; P. Zhao; L. Wang; Y. Sun; H. Zheng; L. Pan; S. Zhao; J. Jiang*; S. Wang; L. Duan*
Atmospheric Environment, 2016, 131: 164-170
A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μm
Liu, J.; J. Jiang*; Q. Zhang; J. Deng; J. Hao
Frontiers of Environmental Science & Engineering, 2016, 10: 63-72
Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China
Li, Q.; X. Li; J. Jiang*; L. Duan; S. Ge; Q. Zhang; J. Deng; S. Wang; J. Hao*
Scientific Reports, 2016, 6: 19306
Influences of coal size, volatile matter content, and additive on primary particulate matter emissions from household stove combustion
Li, Q.; J. Jiang*; Q. Zhang; W. Zhou; S. Cai; L. Duan; S. Ge; J. Hao
Fuel, 2016, 182: 780-787
Improving the Energy Efficiency of Stoves To Reduce Pollutant Emissions from Household Solid Fuel Combustion in China
Li, Q.; J. Jiang*; J. Qi; J. Deng; D. Yang; J. Wu; L. Duan; J. Hao
Environmental Science & Technology Letters, 2016, 3: 369-374
Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies
Li, Q.; J. Jiang*; S. Cai; W. Zhou; S. Wang; L. Duan; J. Hao
Environmental Science & Technology Letters, 2016, 3: 98-103
Investigating the impact of regional transport on PM2.5 formation using vertical observation during APEC 2014 Summit in Beijing
Hua, Y.; S. Wang; J. Wang; J. Jiang; T. Zhang; Y. Song; L. Kang; W. Zhou; R. Cai; D. Wu; S. Fan; T. Wang; X. Tang; Q. Wei; F. Sun; Z. Xiao
Atmos. Chem. Phys., 2016, 16: 15451-15460
Continuous Measurement of Ambient Aerosol Liquid Water Content in Beijing
Fajardo, O. A.; J. Jiang*; J. Hao
Aerosol and Air Quality Research, 2016, 16: 1152-1164
Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth
Chu, B.; X. Zhang; Y. Liu; H. He; Y. Sun; J. Jiang; J. Li; J. Hao
Atmos. Chem. Phys., 2016, 16: 14219-14230
Status and characteristics of ambient PM2.5 pollution in global megacities
Cheng, Z.; L. Luo; S. Wang; Y. Wang; S. Sharma; H. Shimadera; X. Wang; M. Bressi; R. M. de Miranda; J. Jiang; W. Zhou; O. Fajardo; N. Yan; J. Hao
Environment International, 2016, 89-90: 212-221
2015
Optimized DNA extraction and metagenomic sequencing of airborne microbial communities
Jiang, W.; P. Liang; B. Wang; J. Fang; J. Lang; G. Tian; J. Jiang; T. F. Zhu
Nature Protocols, 2015, 10: 768
Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement
Zheng, X.; Y. Wu; J. Jiang; S. Zhang; H. Liu; S. Song; Z. Li; X. Fan; L. Fu; J. Hao
Environmental Science & Technology, 2015, 49: 13492-13500
Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement
Wang, Y.; J. Li; H. Jing; Q. Zhang; J. Jiang; P. Biswas
Aerosol Science and Technology, 2015, 49: 1063-1077
Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China
Wang, J.; S. Wang; A. S. Voorhees; B. Zhao; C. Jang; J. Jiang; J. S. Fu; D. Ding; Y. Zhu; J. Hao
Atmospheric Environment, 2015, 123, Part B: 440-448
Impacts of load mass on real-world PM1 mass and number emissions from a heavy-duty diesel bus
Wang, C.; Y. Wu; J. Jiang; S. Zhang; Z. Li; X. Zheng; J. Hao
International Journal of Environmental Science and Technology, 2015, 12: 1261-1268
Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China
Li, Z.; J. Jiang; Z. Ma; S. Wang; L. Duan
Atmospheric Environment, 2015, 120: 227-233
Improving the Removal Efficiency of Elemental Mercury by Pre-Existing Aerosol Particles in Double Dielectric Barrier Discharge Treatments
Li, Q.; J. Jiang*; L. Duan; J. Deng; L. Jiang; Z. Li; J. Hao
Aerosol Air Qual. Res., 2015, 15: 1506-1513
A Review of Aerosol Nanoparticle Formation from Ions
Li, Q.; J. Jiang*; J. Hao
Kona Powder and Particle Journal, 2015, 57-74
Particulate Matter Distributions in China during a Winter Period with Frequent Pollution Episodes (January 2013)
Jiang*, J.; W. Zhou; Z. Cheng; S. Wang; K. He; J. Hao
Aerosol and Air Quality Research, 2015, 15: 494-503
Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China
Hua, Y.; Z. Cheng; S. Wang; J. Jiang; D. Chen; S. Cai; X. Fu; Q. Fu; C. Chen; B. Xu; J. Yu
Atmospheric Environment, 2015, 123: 380-391
Estimation of Aerosol Mass Scattering Efficiencies under High Mass Loading: Case Study for the Megacity of Shanghai, China
Cheng, Z.; J. Jiang*; C. Chen; J. Gao; S. Wang*; J. G. Watson; H. Wang; J. Deng; B. Wang; M. Zhou; J. C. Chow; M. L. Pitchford; J. Hao
Environmental Science & Technology, 2015, 49: 831–838
2014
Enhanced sulfate formation during China's severe winter haze episode in January 2013 missing from current models
Wang, Y.; Q. Zhang; J. Jiang; W. Zhou; B. Wang; K. He; F. Duan; Q. Zhang; S. Philip; Y. Xie
Journal of Geophysical Research: Atmospheres, 2014, 119: 2013JD021426
Impact of aerosol-meteorology interactions on fine particle pollution during China's severe haze episode in January 2013
Wang, J. D.; S. X. Wang; J. Jiang; A. J. Ding; M. Zheng; B. Zhao; D. C. Wong; W. Zhou; G. J. Zheng; L. Wang; J. E. Pleim; J. M. Hao
Environmental Research Letters, 2014, 9: 094002
Ultrafine particle emissions from essential-oil-based mosquito repellent products
Liu, J.; D. Fung; J. Jiang*; Y. Zhu*
Indoor Air, 2014, 24: 327-335
Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate
Jiang*, J.; C. Kim; X. Wang; M. R. Stolzenburg; S. L. Kaufman; C. Qi; G. J. Sem; H. Sakurai; N. Hama; P. H. McMurry
Aerosol Science and Technology, 2014, 48: 1207-1216
Hygroscopicity of particles generated from photooxidation of alpha-pinene under different oxidation conditions in the presence of sulfate seed aerosols
Chu, B. W.; K. Wang; H. Takekawa; J. H. Li; W. Zhou; J. Jiang; Q. X. Ma; H. He; J. M. Hao
Journal of Environmental Sciences, 2014, 26: 129-139
Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in α-pinene photooxidation
Chu, B.; Y. Liu; J. Li; H. Takekawa; J. Liggio; S.-M. Li; J. Jiang; J. Hao; H. He
Environmental Pollution, 2014, 193: 88-93
Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011
Cheng, Z.; S. Wang; X. Fu; J. G. Watson; J. Jiang; Q. Fu; C. Chen; B. Xu; J. Yu; J. C. Chow; J. Hao
Atmospheric Chemistry and Physics, 2014, 14: 4573-4585
Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event
Cao, C.; W. Jiang; B. Wang; J. Fang; J. Lang; G. Tian*; J. Jiang*; T. F. Zhu*
Environmental Science & Technology, 2014, 48: 1499-1507
2013
Assessing Young People’s Preferences in Urban Visibility in Beijing
Fajardo, O. A.; J. Jiang*; J. Hao*
Aerosol and Air Quality Research, 2013, 13: 1536-1543
Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation
Chu, B.; J. Hao; J. Li; H. Takekawa; K. Wang; J. Jiang
Frontiers of Environmental Science & Engineering, 2013, 7: 1-9
Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China
Cheng, Z.; S. Wang; J. Jiang; Q. Fu; C. Chen; B. Xu; J. Yu; X. Fu; J. Hao
Environmental Pollution, 2013, 182: 101-110
Characteristics and health impacts of particulate matter pollution in China (2001–2011)
Cheng, Z.; J. Jiang*; O. Fajardo; S. Wan; J. Hao*
Atmospheric Environment, 2013, 65: 186-194
2012
Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China
Zhang, H.; S. Wang; J. Hao; L. Wan; J. Jiang; M. Zhang; H. E. S. Mestl; L. W. H. Alnes; K. Aunan; A. W. Mellouki
Atmospheric Environment, 2012, 51: 94-99
Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model
Zhang, H.; J. Li; Q. Ying; J. Z. Yu; D. Wu; Y. Cheng; K. He; J. Jiang
Atmospheric Environment, 2012, 62: 228-242
Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions
Wiedensohler, A.; W. Birmili; A. Nowak; A. Sonntag; K. Weinhold; M. Merkel; B. Wehner; T. Tuch; S. Pfeifer; M. Fiebig; A. M. Fjaraa; E. Asmi; K. Sellegri; R. Depuy; H. Venzac; P. Villani; P. Laj; P. Aalto; J. A. Ogren; E. Swietlicki; P. Williams; P. Roldin; P. Quincey; C. Huglin; R. Fierz-Schmidhauser; M. Gysel; E. Weingartner; F. Riccobono; S. Santos; C. Gruning; K. Faloon; D. Beddows; R. Harrison; C. Monahan; S. G. Jennings; C. D. O'Dowd; A. Marinoni; H. G. Horn; L. Keck; J. Jiang; J. Scheckman; P. H. McMurry; Z. Deng; C. S. Zhao; M. Moerman; B. Henzing; G. de Leeuw; G. Loschau; S. Bastian
Atmospheric Measurement Techniques, 2012, 5: 657-685
Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China
Song, S.; Y. Wu; J. Jiang; L. Yang; Y. Cheng; J. Hao
Environmental Pollution, 2012, 161: 215-221
Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data
Han, X.; N. Corson; P. Wade-Mercer; R. Gelein; J. Jiang; M. Sahu; P. Biswas; J. N. Finkelstein; A. Elde; G. Oberdörster
Toxicology, 2012, 297: 1-9
The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx
Chu, B.; J. Hao; H. Takekawa; J. Li; K. Wang; J. Jiang
Atmospheric Environment, 2012, 55: 26-34
Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer
Chen, M.; M. Titcombe; J. Jiang; C. Jen; C. Kuang; M. L. Fischer; F. L. Eisele; J. I. Siepmann; D. R. Hanson; J. Zhao; P. H. McMurry
PNAS, 2012, 109: 18713-18718
2011
Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties
Suttiponparnit, K.; J. Jiang; M. Sahu; S. Suvachittanont; T. Charinpanitkul; P. Biswas
Nanoscale Research Letters, 2011, 6:
First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events
Jiang*, J.; J. Zhao; M. Chen; F. L. Eisele; J. Scheckman; B. J. Williams; C. Kuang; P. H. McMurry
Aerosol Science and Technology, 2011, 45: ii-v
Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm
Jiang*, J.; M. Chen; C. Kuang; M. Attoui; P. H. McMurry
Aerosol Science and Technology, 2011, 45: 510 - 521
Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification
Jiang, J.; M. Attoui; M. Heim; N. A. Brunelli; P. H. McMurry; G. Kasper; R. C. Flagan; K. Giapis; G. Mouret
Aerosol Science and Technology, 2011, 45: 480 - 492
Ambient Pressure Proton Transfer Mass Spectrometry: Detection of Amines and Ammonia
Hanson, D. R.; P. H. McMurry; J. Jiang; D. Tanne; L. G. Huey
Environmental Science & Technology, 2011, 45: 8881-8888
Validation of an LDH assay for assessing nanoparticle toxicity
Han, X.; R. Gelein; N. Corson; P. Wade-Mercer; J. Jiang; P. Biswas; J. N. Finkelstein; A. Elder; G. Oberdörster
Toxicology, 2011, 287: 99-104
2010 and before
Concept of Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and Chemical/Biological Response Metrics
Rushton, E. K.; J. Jiang; S. S. Leonard; S. Eberly; V. Castranova; P. Biswas; A. Elder; X. Han; R. Gelein; J. Finkelstein; G. Oberdorster
Journal of Toxicology and Environmental Health, Part A, 2010, 73: 445 - 461
Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies
Jiang, J.;G. Oberdörster; P. Biswas
Journal of Nanoparticle Research, 2009, 11: 77-89
Synthesis of visible light-active nanostructured TiOx (x < 2) photocatalysts in a flame aerosol reactor
Dhumal, S. Y.; T. L. Daulton; J. Jiang; B. Khomami; P. Biswas
Applied Catalysis B: Environmental, 2009, 86: 145-151
Crystal structure mediates mode of cell death in TiO2 nanotoxicity
Braydich-Stolle; L. K., N. M. Schaeublin; R. C. Murdock; J. Jiang; P. Biswas; J. J. Schlager; S. M. Hussain
Journal of Nanoparticle Research, 2009, 11: 1361-1374
Quench-Ring Assisted Flame Synthesis of SiO2-TiO2 Nanostructured Composite
Worathanakul, P.; J. Jiang; P. Biswas; P. Kongkachuichay
Journal of Nanoscience and Nanotechnology, 2008, 8: 6253-6259
One-step synthesis of noble metal-titanium dioxide nanocomposites in a flame aerosol reactor
Tiwari, V.; J. Jiang; V. Sethi; P. Biswas
Applied Catalysis A: General, 2008, 345: 241-246
Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O2-CO2 coal combustion
Suriyawong, A.; C. J. Hogan; J. Jiang; P. Biswas
Fuel, 2008, 87: 673-682
Does nanoparticle activity depend upon size and crystal phase?
Jiang, J.; G. Oberdörster; A. Elder; R. Gelein; P. Mercer; P. Biswas
Nanotoxicology, 2008, 2: 33 - 42
Model for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanisms
Jiang, J.; M. H. Lee; P. Biswas
Journal of Electrostatics, 2007, 65: 209-220
Aerosol charging and capture in the nanoparticle size range (6-15 nm) by direct photoionization and diffusion mechanisms
Jiang, J.; C. J. Hogan; D. R. Chen; P. Biswas
Journal of Applied Physics, 2007, 102: 034904
Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology
Jiang, J.; D. R. Chen; P. Biswas
Nanotechnology, 2007, 18: 285603
Trends in anthropogenic mercury emissions in China from 1995 to 2003
Wu, Y.; S. X. Wang; D. G. Streets; J. M. Hao; M. Chan; J. Jiang
Environmental Science & Technology, 2006, 40: 5312-5318
Anthropogenic mercury emissions in China
Streets, D. G.; J. M. Hao; Y. Wu; J. Jiang; M. Chan; H. Z. Tian; X. B. Feng
Atmospheric Environment, 2005, 39: 7789-7806
中文文章
李晓晓, 蒋靖坤, 王东滨, 葛茂发, 郝吉明. 大气超细颗粒物来源及其化学组分研究进展. 环境化学, 2021, 40(10): 2947-2959.
李雪, 蒋靖坤*, 王东滨, 邓建国, 贺克斌, 郝吉明. 冠状病毒气溶胶传播及环境影响因素. 环境科学, 2021, 42(7): 3091-3098.
王东滨, 薛墨, 陈小彤, 蒋靖坤*. 一种新型软X射线气溶胶荷电器的开发与评测. 大气与环境光学学报, 2020, 15(06): 429-437.
张莹,邓建国,王刚,李妍菁,续鹏, 蒋靖坤*,典型钢铁焦化厂可凝结颗粒物排放特征,环境工程,2020, 38(09): 154-158.
邓建国, 张莹, 王乐冰, 李妍菁, 段雷, 郝吉明, 蒋靖坤*,测量固定源可凝结颗粒物的稀释间接法及系统,环境科学学报,2020,40(11):4162-4168.
楚碧武, 马庆鑫, 段凤魁, 马金珠, 蒋靖坤, 贺克斌, 贺泓. 大气“霾化学”:概念提出和研究展望. 化学进展, 2020, 32: 1-4.
蒋靖坤*,邓建国,王刚,张莹,李妍菁,段雷,郝吉明.固定污染源可凝结颗粒物测量方法.环境科学, 2019, 40(12): 5234-5239.
王东滨, 郝吉明, 蒋靖坤*. 民用固体燃料燃烧超细颗粒物排放及其潜在健康影响. 科学通报, 2019, 64: 3429.
薛墨,傅月芸,蔡润龙,蒋靖坤*,郝吉明.1~3 nm颗粒物在粒径分布测量仪中的通过效率研究.环境科学学报,2019,39(9):2896-2902.
邓建国,马子轸,李振,段雷,蒋靖坤*.不同湿法脱硫工艺对燃煤电厂PM2.5排放的影响.环境科学,2019,40(8):3457-3462.
姚群, 柳静献, 蒋靖坤. 钢铁窑炉烟尘细颗粒物超低排放技术与装备. 中国环保产业, 2018, 6: 39 – 43.
闫威卓, 王步英, Oscar Fajardo, 蒋靖坤*, 郝吉明. 北偏西大风对北京冬季生物气溶胶的影响. 环境科学, 2017, 38(9): 3561-3568.
李晓晓, 张强, 邓建国, 蒋靖坤*, 郝吉明. 用于滤膜称重的饱和氯化镁溶液恒湿系统搭建与评估. 环境科学, 2017, 38(8): 3095-3101.
李庆, 段雷, 蒋靖坤*, 王书肖, 郝吉明. 我国民用燃煤一次颗粒物的减排潜力研究. 中国电机工程学报, 2016, 16: 4408-4414
樊筱筱, 蒋靖坤*, 吴烨, 张强, 李振华, 段雷. 不同稀释条件与测量技术下缸内直喷汽车排放颗粒物数浓度和粒径分布特征. 中国电机工程学报,2016, 16
赵承美, 邵龙义, 蒋靖坤, 段雷, 李庆, 王文华. 民用煤燃烧排放PM2.5的微观形貌和化学组分. 中国电机工程学报,2016, 16
樊筱筱, 蒋靖坤*, 张强, 李振华, 何立强, 吴烨, 胡京南, 郝吉明. 轻型汽油车排放颗粒物数浓度和粒径分布特征. 环境科学,2016, 37(10): 3743-3749
蒋靖坤*, 邓建国, 李振, 马子轸, 周伟, 张强, 段雷, 郝吉明. 双级虚拟撞击采样器应用于固定污染源PM10和PM2.5排放测量. 环境科学,2016, 37(6): 2003-2007
张琦, 李庆, 蒋靖坤*, 邓建国, 段雷, 郝吉明. 一套民用固体燃料燃烧大气污染物排放测试系统的搭建和评测. 环境科学学报,2016,36:3393-3399
陈小彤, 蒋靖坤*, 邓建国, 李庆, 段雷,郝吉明. 一种气溶胶测量仪器标定系统的设计及性能评估. 环境科学,2016, 37(3): 789-794
马子轸, 李振, 蒋靖坤, 叶芝祥, 邓建国, 段雷. 燃煤电厂产生和排放的PM2.5中水溶性离子特征. 环境科学, 2015, 36(7):2361-2366
王步英, 郎继东, 张丽娜, 方剑火, 曹晨, 郝吉明, 朱听, 田埂*, 蒋靖坤*. 基于16S rRNA基因测序法分析的北京霾污染过程PM2.5和PM10中细菌群落特征. 环境科学, 2015, 36(8): 2727-2734
李兴华, 曹阳, 蒋靖坤, 段雷, 邓建国, 张强, 韩军赞. 固定源PM2.5稀释采样器的研制. 环境科学学报, 2015, 10: 3309-3315
段雷, 马子轸, 李振, 蒋靖坤, 叶芝祥. 燃煤电厂排放细颗粒物的水溶性无机离子特征综述. 环境科学, 2015, 36(3): 1117-1122
蒋靖坤*, 邓建国, 段雷, 张强, 李振, 陈小彤, 李兴华, 郝吉明. 基于虚拟撞击原理的固定源PM10/PM2.5采样器的研制. 环境科学, 2014, 35(10): 3639-3643.
蒋靖坤*, 邓建国, 李振, 李兴华, 段雷, 郝吉明. 固定污染源排气中PM2.5采样方法综述. 环境科学, 2014,35(5): 2018-2024.
麦华俊, 蒋靖坤*, 何正旭, 郝吉明. 一种纳米气溶胶发生系统的设计及性能测试. 环境科学, 2013,34: 2950-2954
宋少洁, 吴烨, 蒋靖坤, 杨柳, 郝吉明. 北京市典型道路交通环境细颗粒物元素组成及分布特征. 环境科学学报, 2012,32: 66-73.
王书肖, 刘敏,蒋靖坤, 郝吉明, 吴烨, David G.Streets. 中国非燃煤大气汞排放量估算. 环境科学, 2006, 27: 2401-2406.
蒋靖坤, 郝吉明, 吴烨, David G. Streets, 段雷, 田贺忠. 中国燃煤汞排放清单的初步建立. 环境科学, 2005, 26: 34-39.
已毕业学生
沈毅成,2021,中国环境科学研究院,工作
乔晓慧,2021,深圳麦克韦尔股份有限公司,工作
安肇锦,2021,365英国上市官网,博士后
金玟呈,2021,Ministry of Environment Republic of Korea, 工作
赵佳鹏,2021,中国医学科学院,读博
李泽晖,2020,北京大学物理学院,博士后(博雅计划)
李晓晓,2020,365英国上市官网,博士后(水木学者)
李妍菁,2020,奥园集团有限公司,工作
马子轸,2020,青岛理工大学,副教授
花国诚,2020,埃睿迪信息技术有限公司,工作
张莹,2020,冶金工业规划研究院,工作
蔡润龙,2019,University of Helsinki,博士后
陈小彤,2019,全球能源互联网集团,工作
薛墨,2019,深圳麦克韦尔股份有限公司,工作
傅月芸,2019,宝洁中国,工作
王刚,2019,中国石油大学(华东),副教授
任海霞,2019,EPC Natural Products Co., 工作
王亚玲,2019,北京市环境保护科学研究院,工作
李雨阳,2019,365英国上市官网,读博
李怡然,2019,365英国上市官网,读博
姜月,2019,365英国上市官网,工作
张晨翀,2017,Washington University in St. Louis,读博
赵天宁,2017,Harvard University,读博
李振,2017,Virginia Commonwealth University, 博士后
闫威卓,2017,中冶节能环保有限责任公司,工作
吴欣尔,2017,365英国上市官网,读硕
王浩,2017,365英国上市官网,读博
李妍菁,2017,bat365在线平台官方网站深圳研究生院,读硕
周伟,2017,北京雪迪龙科技股份有限公司,工作
Oscar Farjardo, 2016, Universidad Central, 副教授
李庆,2016,复旦大学,青年研究员
王宏恩,2016,Casella公司,工作
Marie Larivoire, 2016, mc2i groupe, 工作
樊筱筱,2016,深圳市高新投集团有限公司,工作
姜仑,2016,UC Berkeley,读硕
于然,2015,同方集团,工作
王步英,2015,北京市环境保护监测中心,工作
张琦,2015,Stanford University,读硕
刘洁琼,2014,西北设计院,工作
李佳育,2014,Washington University in St. Louis, 读博
李晨曦,2014,University of Minnesota,读博
麦华俊,2013,Caltech,读博
刘俊,2013,UC San Diego,读博
吕晓佟,2013,Virginia Tech, 读博
骆锋,2012,道达尔集团(TOTAL),工作
何正旭,2012,bat365在线平台官方网站地学中心,读硕
彭来,2011,北京大学光华管理学院,读硕
(课题组有本科生、硕士生、博士生和博士后开展科学研究的岗位,请联系:jiangjk@tsinghua.edu.cn)
地址 : 北京市海淀区365英国上市官网
邮编 : 100084
邮箱 : hjx@tsinghua.edu.cn
电话 : +86-10-62784521
传真 : +86-10-62785687
365英国上市官网公众号
本科生公众号
研究生公众号
Copyright © 2017 365英国上市官网-bat365在线平台官方网站 版权所有